

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА

КАЛЕНДАРНЫЙ ПЛАН

Факультет АиВТ

дисциплины "Интегралы, ряды, дифференциальные уравнения"

Курс 1 группы АТ-17-1-3

на весенний семестр 2017/2018 учебного года Лектор: д.ф.-м.н., профессор В.Д.Седых

учебный план:

 Всего часов
 102

 Лекции
 51

 Практические занятия
 51

Номер недели	Лекции	Кол-во часов	Практические занятия	Кол-во часов	Форма контроля (Рейтинговая оценка)
1	Комплексные числа и действия над ними. Тригонометрическая форма комплексного числа. Формула Эйлера. Показательная форма комплексного числа. Возведение в степень и извлечение корня.	3	Действия над комплексными числами.	3	
2	Первообразная, достаточное условие ее существования. Структура множества первообразных данной функции. Неопределённый интеграл, таблица интегралов. Интеграл суммы, вынесение константы за знак интеграла, замена переменной, подведение под знак дифференциала, интегрирование по частям.	3	Вычисление неопределенных интегралов при помощи таблицы производных и подведения под знак дифференциала.	3	
3	Интегрирование рациональных функций (простейшие дроби и метод неопределенных коэффициентов). Интегрирование рациональных выражений от $\sin x$ и $\cos x$. Интегрирование иррациональных функций.	3	Замена переменной в неопределенном интеграле, интегрирование по частям. Интегрирование рациональных функций.	3	
4	Определённый интеграл Римана. Ограниченность интегрируемой функции, интегрируемость кусочнонепрерывных функций. Основные свойства интеграла Римана: линейность, монотонность, аддитивность; теоремы об оценке и о среднем.	3	Интегрирование тригонометрических и иррациональных функций. Контрольная работа: вычисление неопределенных интегралов.	3	12 баллов
5	Определённый интеграл как функция верхнего предела; непрерывность и дифференцируемость этой функции. Формула Ньютона-Лейбница. Интегрирование по частям и метод замены переменной в определенном интеграле.	3	Вычисление определенных интегралов: формула Ньютона-Лейбница, интегрирование по частям и замена переменной.	3	
6	Вычисления площадей плоских фигур, объемов тел вращения, длин кривых и другие приложения определенного интеграла.	3	Приложения определенного интеграла.	3	
7	Несобственные интегралы; сходимость, расходимость. Интегралы степенных функций. Несобственные интегралы неотрицательных функций. Признаки сравнения.	3	Контрольная работа: геометрические приложения определенного интеграла. Сходимость несобственных интегралов.	3	12 баллов

8	Числовые ряды. Необходимый признак сходимости. Гармонический ряд. Ряды с неотрицательными членами. Признаки сравнения, ряд Дирихле. Признак Даламбера, радикальный и интегральный признаки Коши.	3	Сходимость числовых рядов. Признаки сходимости знакоположительных рядов.	3	
9	Знакопеременные числовые ряды. Абсолютная и условная сходимость. Признак Лейбница. Линейные операции над рядами. Функциональные ряды. Поточечная и равномерная сходимости. Признак Вейерштрасса. Ограниченность и непрерывность суммы равномерно сходящегося функционального ряда; почленное интегрирование и дифференцирование.	3	Знакопеременные числовые ряды. Абсолютная и условная сходимость. Сходимость функциональных рядов.	3	
10	Степенные ряды. Теорема Абеля. Нахождение радиуса и интервала сходимости степенного ряда. Равномерная сходимость степенного ряда. Бесконечная дифференцируемость суммы степенного ряда внутри интервала сходимости. Почленное дифференцирование и интегриро-	3	Исследование степенных рядов на сходимость. Контрольная работа: исследование числовых рядов на сходимость.	3	12 баллов
11	вание степенного ряда. Задача о разложении бесконечно дифференцируемой функции в её ряд Тейлора. Достаточное условие сходимости ряда Тейлора. Разложение в ряд Маклорена основных элементарных функций.	3	Разложение бесконечно дифференцируемой функции в степенной ряд. Использование степенных рядов в приближенных вычислениях.	3	12 Valifob
12	Функции нескольких переменных, предел, непрерывность, частные производные 1-го порядка. Частные производные сложной функции. Теорема о неявной функции. Производная по направлению, градиент. Множество уровня. Касательная плоскость и нормаль к поверхности.	3	Вычисление частных производных 1-го порядка. Частные производные сложных и неявных функций. Линии уровня, градиент, касательная плоскость и нормаль к поверхности.	3	
13	Частные производные и дифференциалы высших порядков. Равенство смешанных производных. Формула Тейлора функции нескольких переменных. Необходимое условие локального экстремума, достаточное условие.	3	Частные производные 2-го порядка. Локальные экстремумы функции 2-х переменных. Контрольная работа: дифференцирование функций нескольких переменных.	2	12 баллов
14	Дифференциальные уравнения 1-го порядка. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными, однородные, линейные. Дифференциальные уравнения высших порядков.	3	Дифференциальные уравнения с разделяющимися переменными и однородные. Линейные уравнения 1-го порядка.	3	
15	Однородные линейные дифференциальные уравнения n -го порядка. Линейно независимые решения. Определитель Вронского. Неоднородные линейные дифференциальные уравнения. Структура общего решения. Метод вариации постоянных.	3	Два типа дифференциальных уравнений 2-го порядка, допускающих понижение порядка.	3	
16	Неоднородные линейные дифференциальные уравнения n -го порядка с постоянными коэффициентами и со специальной правой частью.	3	Контрольная работа: дифференциальные уравнения 1-го и 2-го порядков. Линейные дифференциальные уравнения 2-го порядка. Методы вариации постоянных и подбора частного решения.	3	12 баллов
17	Резерв	3	Резерв	3	

Литература:

- 1. Я.С.Бугров, С.М.Никольский, Дифференциальное и интегральное исчисление. М.: Наука. 1984.
- 2. Сборник задач по математике для ВТУЗов. Часть 1. Линейная алгебра и основы математического анализа. Под редакцией А.В.Ефимова и Б.П.Демидовича. М.: Наука, 1993.
- 3. В.Д.Седых, Определенный интеграл Римана. Конспект лекций. М.: РГУ нефти и газа им. И.М.Губкина, 2005.
- 4. Г.Н.Берман, Сборник задач по курсу математического анализа. М.: Наука. 2000.
- 5. Л.А.Кузнецов, Сборник заданий по высшей математике. СПб: Лань. 2005.