ВАРИАНТЫ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ ПО ТЕМЕ

«Определенный и несобственный интегралы и их приложения»

- $\int_{\sqrt{2}}^{1} \frac{x dx}{\sqrt[3]{2-x^2}}; \qquad \int_{0}^{1} \frac{x dx}{1+\sqrt{x}}; \quad \int_{0}^{1} x e^{-x} dx; \quad \int_{0}^{\infty} x e^{-x^2} dx.$
- Найти площадь фигуры, ограниченной линями: $y = e^{2x}$; $y = \log_2 x$; x = 1: x = 2
- Найти площадь фигуры в полярной системе координат $r = a \sin 2j$; a = const.
- Найти площадь фигуры, ограниченной линями $\begin{cases} x = 9\cos t \\ v = 4\sin t \end{cases}, \ y = 2 \ (y \ge 2).$ 4.
- Найти длину кривой $y = \ln 7 \ln x$, $\sqrt{3} \le x \le \sqrt{8}$. 5.
- Найти длину дуги кривой в полярной системе координат $r = 6(1 + \sin j)$, 6. $-\frac{p}{2} \le j \le 0$.
- Оценить интеграл $\int_{0}^{\frac{\nu}{2}} \sqrt{2 + \sin x} dx.$ 7.
- Вычислить объем тела, получающегося при вращении параболы $y^2 = 4x$ 8. вокруг своей оси, ограниченного перпендикулярной к ней плоскостью и отстоящей от вершины параболы на расстоянии, равном единице.
- Скорость движения точки $u = e^{-0.01t} M_{c}$. Вычислить путь, пройденный точкой от начала движения до полной остановки.

- 1. $\int_{2}^{8} \sqrt{x-1} dx; \int_{4}^{0} \frac{\sqrt{x}}{\sqrt{x-1}} dx; \int_{\underline{p}}^{\underline{p}} \frac{x dx}{\sin^{2} x}; \quad \int_{0}^{\infty} \frac{dx}{x^{2} + 2x + 2}.$
- Найти площадь фигуры, ограниченной линями $y^2 = 2x + 1$; x y 1 = 0. 2.
- Найти площадь фигуры, ограниченной кривыми в полярной системе ко-3. ординат $r = \cos \mathbf{j}$; $r = 2\cos \mathbf{j}$.
- Найти площадь фигуры, ограниченной кривыми, заданными в парамет-4. рическом виде $\begin{cases} x = 3\cos t \\ y = 8\sin t \end{cases}, \quad y = 4 \ (y \ge 4).$

- 5. Найти длину дуги кривой $y = \ln(x^2 1), 2 \le x \le 3$.
- 6. Найти длину дуги кривой, заданной в параметрическом виде

$$\begin{cases} x = e^t(\cos t + \sin t) \\ y = e^t(\cos t - \sin t) \end{cases}, \quad 0 \le t \le \frac{p}{6}.$$

- 7. Оценить интеграл, не вычисляя его $\int_{0}^{1} \frac{dx}{\sqrt{4-x^2-x^3}}$.
- 8. Вычислить объем тела, вращения вокруг оси X криволинейной трапеции, ограниченной гиперболой $y = \frac{1}{x}$ и прямыми линями x = 2, x = 6.
- 9. Тело движется со скоростью $u = e^{-0.01t} \frac{M}{C}$. Определить закон движения тела, если за 5 секунд оно прошло 105 м.

Вариант 3.

1.
$$\int_{1}^{3} x \sqrt{x^2 + 7} dx$$
; $\int_{3}^{8} \frac{x dx}{\sqrt{1 + x}}$; $\int_{0}^{\frac{p}{2}} x \cos x dx$; $\int_{0}^{\infty} e^{-\sqrt{x}} dx$.

- 2. Вычислить площадь фигуры, заключенной между параболой $y = x^2 + 4x 3$ и касательной к ней в точках (0;-3) и (3;0).
- 3. Вычислить площадь фигуры, ограниченной кривыми в полярной системе координат $r=2\cos j$; $r=4\cos j$
- 4. Вычислить площадь фигуры, ограниченной астроидой, заданной в параметрическом виде $\begin{cases} x = a\cos^3 t \\ v = a\sin^3 t \end{cases}$, (в первом квадрате $\frac{p}{2} \le t \le 0$).
- 5. Найти длину дуги кривой $y = 1 \ln \cos x$, $0 \le x \le p$.
- 6. Найти длину дуги кривой, заданной в параметрическом виде $\begin{cases} x = 5(t \sin t) \\ y = 5(1 \cos t) \end{cases}, \quad 0 \le t \le p.$
- 7. Оценить интеграл, не вычисляя его $\int_{\frac{p}{4}}^{\frac{p}{3}} \frac{\sin x}{x} dx$.
- 8. Вычислить объем тела, полученного вращением около оси ОХ, плоской фигуры, ограниченной кривой $y = 2^x$ и прямой 4y 3x 5 = 0.
- 9. Скорость движения точки изменяется по закону $\mathbf{u}(t) = (3t^2 + 2t + 1) \frac{M}{C}$. Вычислить путь, пройденный точкой за 10 секунд от начала движения.

1.
$$\int_{0}^{\frac{p}{9}} \sin^{2} 3x dx; \qquad \int_{1}^{3} \frac{\sqrt{2+x}}{x} dx; \qquad \int_{1}^{2} \frac{x dx}{\sqrt{x-1}}; \qquad \int_{0}^{e-1} \ln(x+1) dx.$$

- Вычислить площадь фигуры, ограниченной параболами $y = x^2$ и $y = \sqrt{x}$ 2.
- Найти площадь фигуры, ограниченной улиткой Паскаля в полярной сис-3. теме координат $r = 2a(2 + \cos j)$, a = const.
- Вычислить площадь фигуры, ограниченной осью ОХ и одной аркой цик-4. лоиды $\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$
- Найти длину дуги кривой $y = e^x + 6$, $(\ln \sqrt{8} \le x \le \ln \sqrt{15})$. 5.
- Найти длину дуги кривой, заданной в параметрическом виде

$$\begin{cases} x = 8\cos^3 t \\ y = 8\sin^3 t \end{cases}, \qquad 0 \le t \le \frac{p}{6}.$$

- Оценить интеграл, не вычисляя его $\int_{0}^{1} \sqrt{x^2 + 2x + 4} dx$. 7.
- Вычислить объем тела, образованного вращением вокруг оси ОХ плоской 8. фигуры, ограниченной кривыми $x^2 + y^2 = 1$ и $y^2 = \left(\frac{3}{2}\right)x$.
- Мгновенная скорость движения определяется в зависимости от времени формулой $u = \sqrt{1+t} \, {}^{M}\!\!/_{C}$. Определить среднюю скорость движения за 10 секунд от начала движения.

1.
$$\int_{2}^{3} \frac{xdx}{(2+x)(x^{2}+3)}; \int_{0}^{\ln 2} \sqrt{e^{x}-1} dx; \int_{0}^{3} \ln(x+3) dx; \int_{0}^{\infty} x \sin x dx.$$

- Найти площадь фигуры, ограниченной кривой $y = \ln x$, осью OX и пря-2. мой
- Найти площадь, ограниченной кривой $r = 4\cos j$ в полярной системе ко-3. ординат.
- Найти площадь фигуры, ограниченной кривыми $\begin{cases} x = 3\cos t \\ y = 8\sin t \end{cases}$, y = 44. $(y \ge 4)$.
- Найти длину дуги кривой $y = \ln \cos x + 2$, $0 \le x \le \frac{p}{6}$. 5.

- 6. Найти длину дуги кривой, заданной в параметрическом виде $\begin{cases} x = 6(\cos t + \sin t) \\ y = 6(\sin t t \cos t) \end{cases}, \quad 0 \le t \le p.$
- 7. Оценить интеграл, не вычисляя его $\int_{0}^{2p} \frac{dx}{10 + 2\cos x}$.
- 8. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной осями координат и параболой $x^{\frac{1}{2}} + y^{\frac{1}{2}} = a^{\frac{1}{2}}$. Предварительно найти отрезок интегрирования путем вычисления точек пересечения кривой с осями координат.
- 9. Два тела начали двигаться одновременно из одной точки в одном направлении вдоль прямой. Первое тело движется со скоростью $u(t) = (6t^2 + 2t) \frac{M}{c}$, второе со скоростью $u(t) = (4t+5) \frac{M}{c}$. На каком расстоянии друг от друга они окажутся через 5 сек?

Вариант 6.

1.
$$\int_{\sqrt{2}}^{0} x^{2} \sqrt{x^{3} - 1} dx; \quad \int_{0}^{\ln 5} \frac{e^{x} \sqrt{e^{x} - 1}}{e^{x} + 3} dx; \quad \int_{0}^{3} x \arctan dx; \quad \int_{1}^{\infty} \frac{2 + \arcsin \frac{1}{x}}{1 + \sqrt{x}} dx$$

- 2. Вычислить площадь сегмента, отсекаемого от кривой $y^2 = x^3 x^2$ хордой x = 2.
- 3. Вычислить площадь фигуры, ограниченной кривой $r = 1 + \cos j$.
- 4. Вычислить площадь фигуры, ограниченной линями $\begin{cases} x = 8(t \sin t) \\ y = 6(\sin t t \cos t) \end{cases}$ и y = 12 ($y \ge 12$).
- 5. Найти длину дуги кривой $y = 1 \ln \cos x$.
- 6. Найти длину дуги кривой, заданной параметрическими уравнениями $\begin{cases} x = 3(t \sin t) \\ y = 3(1 \cos t). \\ p \le t \le 2p \end{cases}$
- 7. Найти средние значение функции $f(x) = \cos^2 x$ на отрезке $0 \le x \le p$.
- 8. Определить объем тела, образованного вращением вокруг оси ОУ фигуры, ограниченной линиями $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, y = b, y = -b.
- 9. Скорость движения точки $u(t) = (12t^2 3t) \frac{M}{C}$. Вычислить путь, пройденный точкой от начала движения до её остановки. Найти закон ускорения движения точки в зависимости от времени t.

1.
$$\int_{4}^{13} \frac{dx}{\sqrt[4]{x-3}}; \quad \int_{0}^{\frac{p}{6}} x \sin^{2} x dx; \qquad \int_{1}^{\sqrt{3}} \frac{\sqrt{1+x^{2}}}{x^{2}} dx; \quad \int_{2}^{\infty} \frac{x dx}{\sqrt{(x^{2}-3)^{3}}}$$

- Вычислить площадь фигуры, ограниченной линиями $7x^2 9y + 9 = 0$ и 2. $5x^2 - 9y + 27 = 0$.
- Найти площадь фигуры в полярной системе координат $r = 2\sin 4j$. 3.
- Найти площадь фигуры, ограниченной линиями $\begin{cases} x = 3\cos t \\ y = 8\sin t \end{cases}$ и y = 44. $(y \ge 4)$.
- Найти длину дуги кривой $y = \arcsin x \sqrt{1 x^2}$, $0 \le x \le \frac{15}{16}$. 5.
- Найти длину дуги кривой $\begin{cases} x = 4(t \sin t) \\ y = 4(1 \cos t) \end{cases}, \qquad \frac{p}{2} \le t \le \frac{2p}{3}.$ 6.
- Вычислить среднее значение функции $f(x) = \frac{1}{\sqrt{4-x^2}}$ на отрезке 7. $0 \le x \le 1$.
- Вычислить среднее значение объема тела, образованного вращением фигуры, ограниченной линиями $y = e^x - 1$, y = 2, x = 0.
- Вычислить силу давления воды на вертикальную треугольную пластинку с основанием b и высотой h, погруженную в воду так, что её вершина лежит на поверхности воды. Произвести расчет для h = 9 и b = 4 м, удельный вес жидкости g.

1.
$$\int_{4}^{13} \frac{dx}{\sqrt[4]{x-3}}; \qquad \int_{0}^{2p} \sin^{4}x dx; \qquad \int_{0}^{2} e^{2x} x dx; \qquad \int_{1}^{2} \frac{x dx}{\sqrt{x-1}}$$

- Найти площадь, заключенную между параболой $y = x^2 2x + 2$, касательной к ней в точке М (3;5) и осью ординат.
- Найти площадь области, ограниченной кривой $r = a(1 + \cos \mathbf{j})$ и лежащей вне кривой $r = 3a \cos \mathbf{j}$.
- Найти площадь фигуры, ограниченной линиями $\begin{cases} x = 9\cos t \\ v = 4\sin t \end{cases}$, y = 24. $(y \ge 2)$.
- Найти длину дуги кривой $y = \ln \sqrt{x}$, $\sqrt{5} \le x \le \sqrt{15}$. 5.

- Найти длину дуги параметрической кривой $\begin{cases} x = 6(\cos t + t \sin t) \\ y = 6(\sin t t \cos t) \end{cases}$ 6. $0 \le t \le p$.
- 7. Найти среднюю температуру стержня длины $\mathbf{l} = 2\sqrt{2}$, если распределение температуры вдоль стержня имеет вид

$$T(x) = x^2 \sin 5x, -\sqrt{2} \le x \le \sqrt{2}$$
.

- Найти объем тела, образованного при вращении фигуры, ограниченной 8. линиями $y = e^x - 1$, y = 2, x = 0 вокруг оси ОҮ.
- Вычислить величину давления на полукруг радиуса R, вертикально по-9. груженный в жидкость, если его диаметр лежит на свободной поверхности жидкости. Принять удельный вес жидкости равным \boldsymbol{g} .

Вариант 9.

1.
$$\int_{-5}^{4} \frac{dx}{\sqrt[4]{x+5}}$$
; $\int_{0}^{2p} \frac{dx}{4+\cos^{2}t}$; $\int_{1}^{2} x \operatorname{arcctg} \frac{x}{2} dx$; $\int_{1}^{\infty} \frac{dx}{x+x^{3}}$

- Найти площадь фигуры, заключенной между линиями $y = 4x^2$, $y = x^{\frac{2}{9}}$ и 2. y = 2.
- 3.
- Найти площадь фигуры $r=\frac{1}{2}+\cos j$ в полярной системе координат. Найти площадь, ограниченную линиями $\begin{cases} x=2\sqrt{2}\cos t \\ y=5\sqrt{2}\sin t \end{cases}$ и y=5 $(y\geq 5)$. 4.
- Найти длину дуги кривой $y = \ln \cos x + 2$, $0 \le x \le \frac{p}{6}$. 5.
- Найти длину дуги параметрической кривой $\begin{cases} x=2, 5(t-\sin t) \\ y=2, 5(1-\cos t) \end{cases}, \frac{p}{2} \le t \le p \ .$ 6.
- Оценить интеграл $\int_{0}^{\frac{p}{2}} \frac{dx}{1+\sin^2 x}$, пользуясь теоремой о среднем значении. 7.
- Вычислить объем тела, полученный от вращения криволинейной трапе-8. ции, ограниченной линией $y = \arcsin x$ с основанием [0,1] вокруг оси ОХ.
- 9. Тело брошено вертикально вверх с поверхности земли со скоростью $u(t) = (39, 2-9, 8t)^{M}$. Найти наибольшую высоту подъема тела.

$$1. \int_{-1}^{1} x \sqrt{2 - x^2} dx, \int_{0}^{2p} \frac{dx}{2 - \sin x}, \int_{0}^{p/3} x \cdot arctg(x) dx, \int_{0}^{2} \frac{dx}{x^2 - 4x + 3}.$$

- 2. Вычислить площадь фигуры, ограниченной линией $y = \sqrt{4 x^2}$ и осью ОХ.
- 3. Найти площадь общей части фигур, ограниченных линиями, предварительно построив эти линии в полярной системе координат: $r = 3 + \cos 4 \boldsymbol{j}$, $r = 2 \cos 4 \boldsymbol{j}$.
- 4. Найти площадь фигуры, ограниченной линиями $\begin{cases} x = 3\cos t \\ y = 8\sin t \end{cases}$, y = 4 ($y \ge 4$).
- 5. Найти длину дуги кривой $y = \ln \frac{5}{2x}$, $(\sqrt{3} \le x \le \sqrt{8})$.
- 6. Найти длину дуги кривой $\begin{cases} x = 3 \left(2 \cos t \cos 2t \right) \\ y = 3 \left(\sin t \sin 2t \right) \end{cases}, \ 0 \le t \le 2p \ .$
- 7. Оценить интеграл $\int_{0}^{1} \sqrt{1+x^4} dx$ используя теорему о среднем значении.
- 8. Построить линию $y^2 = x(x-3)$. Вычислить объем тела, полученного вращением вокруг оси абсцисс трапеции, лежащей над осью ОХ и ограниченной этой линией.
- 9. Два тела движутся по прямой из одной и той же точки. Первое тело движется со скоростью $v(t)=(3t^2-6t)$ м/с, второе со скоростью v(t)=(10t+20) м/с. В какой момент и на каком расстоянии от начальной точки произойдет их встреча?

1.
$$\int_{2}^{10} \frac{x dx}{\sqrt[4]{2x^2 - 1}}$$
, $\int_{0}^{p/2} \frac{dx}{2 + \cos x}$, $\int_{0}^{1} \frac{\arcsin x dx}{\sqrt{1 + x}}$, $\int_{1}^{\infty} \frac{dx}{x^2 + 2x}$.

- 2. Вычислить площадь двух частей, на которые круг $x^2+y^2=8$ разделен параболой $y^2=2x$.
- 3. Найти площадь фигуры, ограниченной полярной осью и первым витком спирали Архимеда r=aj .
- 4. Найти площадь фигуры, ограниченной замкнутой кривой

$$\begin{cases} x = 2(2\cos t - \cos 2t), \\ y = 2(2\sin t - \sin 2t) \end{cases} \quad 0 \le t \le 2p.$$

- 5. Вычислить длину дуги цепной линии, заданной уравнением $y = 2\left(e^{x/4} + e^{-x/4}\right)$ от точки x = 0 до точки x = 4.
- 6. Найти длину дуги параметрической кривой $\begin{cases} x = e^t \sin t, \\ y = e^t \cos t \end{cases}, \quad 0 \le t \le \frac{p}{2}.$

- 7. Вычислить среднее значение функции $y=\cos(2x)$ на отрезке $[0;\pi/2]$.
- 8. Вычислить объем тела, образованного при вращении фигуры, ограниченной линиями $x = \sqrt{y}$, 5x - y - 4 = 0, x = 0 вокруг оси ОУ.
- 9. Вычислить работу, необходимую для того, чтобы выкачать воду из полусферического котла с радиусом основания R=10 м.

$$1. \int_{0}^{p/4} e^{\cos 3x} \sin 3x dx, \int_{5}^{8} \frac{3x-4}{x^2-4} dx, \int_{p}^{p/2} x \sin 2x dx, \int_{2}^{4} \frac{dx}{\sqrt[5]{(x-4)^3}}.$$

- 2. Вычислить площадь каждой из фигур, ограниченных окружностью $x^2 + y^2 + 6x + 2y + 8 = 0$ и параболой $y = x^2 + 6x + 10$.
- 3. Вычислить общую часть площади, заключенную между линиями r=2 и $r = 2(1 + \cos i)$.
- 4. Найти площадь фигуры, ограниченной линиями $\begin{cases} x = 9\cos t \\ y = 4\sin t \end{cases}$, и y = 2 (y 32).
- 5. Найти длину дуги кривой $y=x^2/4-1/2\ln x$ (1≤x≤2).
- 6. Найти длину дуги кривой $\begin{cases} x = 4(t \sin t) \\ v = 4(1 \cos t) \end{cases}, \, p / 2 \le t \le 2p / 3.$
- 7. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями xy = 4, x = 1, x = 4, y = 0, вокруг оси ОХ.
- 8. Вычислить среднее значение функции $f(x)=10+2\sin x+3\cos x$ на отрезке $[0,2\pi].$
- 9. Котел имеет форму параболоида вращения. Радиус основания равен R, а глубина котла равна Н. Котел наполнен жидкостью с удельным весом у. Вычислить работу, которую необходимо затратить, чтобы выкачать жидкость из котла.

1.
$$\int_{1}^{10} \sqrt{x-1} dx$$
, $\int_{0}^{1} (x-3)e^{-x} dx$, $\int_{0}^{1} \frac{\sqrt{x+1}}{\sqrt{x+5}} dx$, $\int_{-1}^{1} \frac{x-1}{\sqrt[3]{x^5}} dx$.

- 2. Вычислить площадь фигуры, ограниченной линиями $y = x^2 - 6x + 10$, $y = 6x - x^2$.
- 3. Найти площадь, ограниченную кривой $r = \sin 3j$.
- 4. Найти площадь фигуры, ограниченной линией $\begin{cases} x = 3\cos t \\ v = 4\sin t. \end{cases}$
- 5. Вычислить длину дуги кардиоиды $r=2(1-\cos i)$.
- 6. Вычислить длину дуги кривой, заданной уравнением $y = \ln \cos x + 2$, $(0 \le x \le p/6)$.

- 7. Вычислить объем тела, образованного вращением вокруг оси ОХ одного из криволинейных треугольников, образованных линиями y = 0, $y = \sin x$, $y = \cos x$.
- 8. Оценить интеграл $\int_{0}^{p} \sqrt{2 \cos x} dx$.
- 9. Материальная точка движется со скоростью $u(t) = t/\sqrt{2+5t^2}$ м/с. Вычислить путь, пройденный ею за 10с.

1.
$$\int_{2}^{0} x\sqrt{4-x^2} dx$$
, $\int_{3}^{8} \frac{xdx}{\sqrt{1+x}}$, $\int_{0}^{2} \frac{dx}{\sqrt[3]{(x-1)^2}}$, $\int_{3}^{\sqrt{3}} \frac{dx}{\sqrt{(4-x^2)^3}}$.

- 2. Вычислить площадь фигуры, ограниченной линиями $y = x^2$, $y = 0.5x^2$, y = 2x.
- 3. Вычислить площадь, ограниченную линией $r = a \cos 2j$.
- 4. Вычислить площадь фигуры, ограниченной кривой $\begin{cases} x = 3\cos t \\ y = 2\sin t \end{cases}$.
- 5. Вычислить длину дуги $y = -\ln \cos x$, $0 \le x \le 15/16$.
- 6. Определить длину дуги кривой $\begin{cases} x = 1 \cos t \\ y = 2 + \sin t \end{cases}$, $0 \pounds t \pounds 3 p/2$.
- 7. Оценить интеграл $\int_{0}^{\mu} \frac{\sin x}{x} dx$.
- 8. Найти объем тела вращения, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями $y=2-x^2$, $y=x^2$.
- 9. Материальная точка движется со скоростью $u(t) = t\sqrt{4 + t^2}$ м/с. Вычислить путь, пройденный ею за 20с.

1.
$$\int_{-1}^{1} \frac{x+1}{\sqrt[5]{x^3}} dx, \int_{0}^{2} \frac{dx}{(4+x^2)^{3/2}}, \int_{2}^{3} x\sqrt{x^2-4} dx, \int_{1}^{\infty} \frac{x^3+1}{x^4} dx$$

Вычислить площадь фигуры, ограниченной линиями xy = 20, $x^2 + y^2 = 41$.

- 3. Вычислить площадь фигуры, ограниченной линией $r = \frac{1}{2} + \cos j$
- 4. Вычислить площадь фигуры, ограниченной линиями $\begin{cases} x = 4(t \sin t) \\ y = 4(1 \cos t), \ y = 6, (y \ge 6). \\ 0 \le x \le 8p \end{cases}$

5. Вычислить длину дуги кривой
$$y = 1 - \ln(x^2 - 1)$$
, $3 \le x \le 4$.

- 6. Вычислить длину дуги кривой $\begin{cases} x = 2.5(t \sin t) \\ y = 2.5(1 \cos t) \end{cases}$, $\frac{p}{2} \le t \le p$.
- 7. Оценить интеграл $\int_0^1 \sqrt[3]{4 3x^3} dx$, не вычисляя его.
- 8. Вычислить объем тела вращения, возникающего при вращении фигуры $y = 2x x^2$, y = -x + 2, x = 0 вокруг оси ОХ.
- 9. Цилиндр диаметром 20 см и длиной 80 см заполнен паром под давлением $10\kappa \Gamma/\text{сm}^2$. Какую работу надо затратить, чтобы уменьшить объем пара в два раза, считая, что температура пара остается постоянной?

1.
$$\int_{0}^{2} \frac{x}{\sqrt{1+2x^{2}}} dx, \int_{2}^{3} \frac{x^{2} dx}{(2+x)(x^{2}-3)}, \int_{\frac{p}{20}}^{\frac{p}{2}} x \cos x dx, \int_{1}^{\infty} \frac{1}{x^{2}+2x} dx.$$

- 2. Вычислить площадь фигуры, ограниченной линиями $x = (y-2)^3$, x = 4y-8.
- 3. Вычислить площадь фигуры, ограниченной линией $r = 1 + \sqrt{2} \cos \boldsymbol{j}$.
- 4. Вычислить площадь фигуры, ограниченной линиями $(x-2(t-\sin t))$

$$\begin{cases} x = 2(t - \sin t) \\ y = 2(1 - \cos t) \end{cases}, y = 3, (0 < x < 4p, y \ge 3).$$

- 5. Вычислить длину дуги кривой $y = \cosh x + 3, \ 0 \le x \le 1$.
- 6. Вычислить длину дуги кривой $\begin{cases} x = 4(2\cos t \cos 2t) \\ y = 4(2\sin t \sin 2t), \end{cases} \quad 0 \le t \le p \ .$
- 7. Оценить интеграл $\int_{0}^{5/2} \frac{x^2 dx}{\sqrt{25 x^2}}$, не вычисляя его.
- 8. Вычислить объем тела, образованного вращением фигуры, ограниченной линиями $y=1-x^2, \ x=0, \ x=\sqrt{y-2}, \ x=1$ вокруг оси ОХ.

9. Вычислить среднюю температуру стержня длины L=2, если распределение температуры вдоль стержня подчиняется закону

$$T(x) = x^2 \cos 4x, -1 \le x \le 1.$$

Вариант 17

1.
$$\int_{0}^{2} \frac{x^{2}}{1+x^{3}} dx$$
, $\int_{1}^{2} \frac{2xdx}{(2+x)(x+3)}$, $\int_{0}^{\frac{p}{2}} \frac{\cos x}{2+\cos x} dx$, $\int_{2}^{6} \frac{1}{(x-2)^{2}} dx$.

- 2. Вычислить площадь фигуры, ограниченной линиями $x = (y-2)^3$, x = 4y-8.
- 3. Вычислить площадь фигуры, ограниченной линией $r = 1 + \sqrt{2} \sin j$.
- 4. Вычислить площадь фигуры, ограниченной кривыми $\begin{cases} x = 2\cos t \\ y = 6\sin t \end{cases}, \ y = 3(y \ge 3)$
- 5. Вычислить длину дуги кривой $y = \frac{x^2}{4} \frac{\ln x}{4}, \ 1 \le x \le 2.$
- 6. Вычислить длину дуги кривой $\begin{cases} x = 10\cos^3 t \\ y = 10\sin^3 t \end{cases}, \ 0 \le t \le \frac{p}{2}.$
- 7. Доказать, что $\frac{p}{6} < \int_{0}^{1} \frac{dx}{\sqrt{4 x^2 x^3}} < \frac{p}{4\sqrt{2}}$.
- 8. Определить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями $y = e^{1-x}$, y = 0, x = 0, x = 1.
- 9. Определить удлинение тяжелого стержня конической формы, укрепленного основанием и обращенного вершиной вниз, если радиус основания R, высота конуса H и удельный вес материала стержня g.

Примечание: Относительное удлинение e стержня пропорционально напряжению s в соответствующем поперечном сечении $e = \frac{s}{E}$, где Е-модуль Юнга.

1.
$$\int_{0}^{1} x\sqrt{2-x^{2}} dx$$
,
$$\int_{0}^{1} \frac{xdx}{(2+x)(9-x^{2})}$$
,
$$\int_{0}^{\frac{p}{2}} -\frac{\sin x}{5+3\sin x} dx$$
,
$$\int_{0}^{2} \frac{1}{x^{2}+2x+1} dx$$
.

- 2. Вычислить площадь фигуры, ограниченной линиями $x = 4 (y 1)^2$, $x = y^2 4y + 3$.
- 3. Вычислить площадь фигуры, ограниченной кривыми $r = \cos j$, $r = \sin j$, $0 \le j \le p/2$.

4. Вычислить площадь фигуры, ограниченной линией $x = 2\sqrt{2}\cos t$

$$\begin{cases} x = 2\sqrt{2}\cos t \\ y = 5\sqrt{2}\sin t \end{cases}, \ y = 5, (y \ge 5).$$

- 5. Вычислить длину дуги кривой y = 2 + ch x, $0 \le x \le 1$
- 6. Вычислить длину дуги кривой $\begin{cases} x = 8(\cos t + t \sin t) \\ y = 8(\sin t t \cos t) \end{cases}, \ 0 \le t \le p/4.$
- 7. Вычислить среднее значение функции $f(x) = \frac{1}{x^2 + x}$ на отрезке [1;1,5]
- 8. Вычислить объем тела, образованного вращением фигуры, ограниченной графиками функций $y^3 = x 2$, y = 0, y = 1 вокруг оси ОҮ.
- 9. Вычислить работу, затраченную на выкачивание воды из конического сосуда, основание которого горизонтально и расположено ниже вершины, если радиус основания r и высота h.

$$\underline{\mathbf{OTBeT}}: A = \frac{p r^2 h^2}{4}.$$

1.
$$\int_{2}^{6} \frac{dx}{\sqrt[3]{(4-x)^{2}}}, \int_{3}^{8} \frac{xdx}{\sqrt{1+x}}, \int_{0}^{\frac{p}{3}} xe^{2x}dx, \int_{1}^{2} \frac{1-x}{(x^{2}+x+1)x}dx.$$

- 2. Вычислить площадь фигуры, ограниченной линиями xy = 2 и $x^2 + y^2 = 5$.
- 3. Вычислить площадь фигуры, ограниченной линией $r = \sin^2 \frac{j}{2}$, расположенной справа от луча $j = \frac{p}{2}$.
- 4. Вычислить площадь, ограниченную кривыми

$$\begin{cases} x = 6(t - \sin t) \\ y = 6(1 - \cos t) \end{cases}, y = 9, (y \ge 9).$$

- 5. Вычислить длину дуги кривой $y = \ln \sin x$, $\frac{p}{2} \le x \le \frac{2p}{3}$.
- 6. Вычислить длину дуги кривой $\begin{cases} x = 8\cos^3 t, & 0 \le t \le \frac{p}{6}. \\ y = 8\sin^3 t, & 0 \le t \le \frac{p}{6}. \end{cases}$
- 7. Оценить интеграл, не вычисляя его $\int_{0}^{2p} \frac{dx}{10 + 3\cos x}$.
- 8. Вычислить объем тела, полученного от вращения фигуры, ограниченной параболой $y = 2x x^2$ и осью абсцисс, вокруг оси ординат.

9. Вычислить массу стержня длины 100 см, если линейная плотность стержня меняется по закону $d = (20x + 0.15x^2)$ г/см, где x-расстояние от одного из концов стержня.

Ответ: М=150 кг.

1.
$$\int_{0}^{p/12} \frac{dx}{ctg3x}, \int_{-\infty}^{+\infty} \frac{2xdx}{x^2+1}, \int_{-2}^{1} \frac{dx}{(11+5x)^3}, \int_{0}^{1} \frac{\sqrt{1+x}dx}{x+5}.$$

- 2. Вычислить площадь фигуры, ограниченной параболами $y=x^2-6x+10$, $y=6x-x^2$.
- 3. Вычислить площадь фигуры, ограниченной линией $r=3+2\cos 2j$.
- 4. Вычислить площадь фигуры, ограниченной кривыми

$$\begin{cases} x = 9\cos t \\ y = 4\sin t \end{cases}, \ y = 2 \ (y \ge 2).$$

- 5. Вычислить длину дуги кривой $y = 2 + \arcsin \sqrt{x} + \sqrt{x x^2}, \left(\frac{1}{4} \le x \le 1\right).$
- 6. Найти длину дуги кривой $r=2(1-\cos j)$, $0 \pounds j \pounds p$.
- 7. Оценить интеграл $\int_{0}^{2} \frac{x^2 + 5}{x^2 + 2} dx$, не вычисляя его.
- 8. Найти объем тела вращения, полученного при вращении фигуры, ограниченной кривыми $y = \sqrt{x-1}$, y=0, y=1, x=0.5 около оси ОҮ.
- 9. Сжатие пружины пропорционально приложенной силе. Вычислить работу силы при сжатии пружины на 5 см., если сила 0.05 кГ. сжимает ее на 1см.

2.
$$\int_{0}^{-2} \frac{dx}{\sqrt[3]{(x+2)^2}}, \int_{\ln 3}^{\ln 8} \frac{dx}{\sqrt{1+e^x}}, \int_{1}^{\infty} \frac{arctgx}{x^2} dx, \int_{0}^{3} \frac{dx}{(9+x^2)^{3/3}}.$$

- 3. Вычислить площадь фигуры, ограниченной линиями $y=x^2$, $4y=x^2$, y=4.
- 4. Вычислить площадь фигуры, ограниченной линией $r=3\sin 2i$.
- 5. Вычислить площадь фигуры, ограниченной линиями

$$\begin{cases} x = 9\cos t \\ y = 2\sin t \end{cases}, y = 2 \ (y \ge 2).$$

- 6. Вычислить длину дуги кривой $y = \sqrt{1 x^2} + \arcsin x$, $0 \pounds x \pounds p/6$.
 7. Найти длину дуги кривой $\begin{cases} x = 3(2\cos t \cos 2t) \\ y = 3(2\sin t \sin 2t) \end{cases}$, $0 \pounds t \pounds 2p$.
- 8. Оценить интеграл $\int_{0}^{1} \sqrt[3]{4-3x^2} dx$, не вычисляя его.

- 9. Определить объем тела вращения фигуры, образованной линиями $2x-x^2-y=0$, $2x^2-4x+y=0$ вокруг оси ОХ.
- 10.Скорость движения тела пропорциональна кубу времени. В конце 8-й секунды скорость тела равна 5 м/с. Чему равен путь, пройденный телом за 15с.?

$$1. \int_{0}^{2} x \sqrt{4 - x^{2}} dx, \int_{1}^{e} \ln^{2} x dx, \int_{-1}^{1} \frac{x dx}{\sqrt{5 - 4x}}, \int_{0}^{16} \sqrt{256 - x^{2}} dx.$$

- 2. Определить площадь фигуры, ограниченной линиями xy=1, x=y, y=4.
- 3. Вычислить общую часть площади, ограниченную линиями в полярной системе координат $r=2(1+\cos j)$, r=2.
- 4. Вычислить площадь фигуры $\begin{cases} x = 4(t \sin t) \\ y = 4(1 \cos t) \end{cases}$ p/2 £ t £ 2p/3.
- 5. Вычислить длину дуги кривой $y = \frac{2}{5}x\sqrt[4]{x} \frac{2}{3}\sqrt[4]{x^3}, \left(0 \le x \le \frac{25}{9}\right).$
- 6. Вычислить длину дуги кривой $r=7(1-\sin j)$, $-p/6 \ \pounds j \ \pounds p/6$.
- 7. Доказать, что $\frac{2}{5} \le \int_{1}^{2} \frac{x dx}{1 + x^2} \le \frac{1}{2}$.
- 8. Найти объем тела, образованного вращением фигуры, ограниченной линиями $y^2=4-x$ и x=0 вокруг оси ОҮ.
- 9. Определить давление воды на вертикальный параболический сегмент, основание которого равно 4 м и расположено на поверхности воды, а вершина лежит на глубине 4 м.

1.
$$\int_{0}^{p/8} tg \, 2x dx$$
, $\int_{\sqrt{2}}^{1} \frac{x dx}{\sqrt[3]{2-x^2}}$, $\int_{0}^{1} \frac{\sqrt{e^x} dx}{\sqrt{e^x - e^{-x}}}$, $\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2}$.

- 2. Вычислить площадь фигуры, ограниченной линиями $y=x^2-2x$, y=x.
- 3. Вычислить площадь фигуры, ограниченной линией в полярной системе координат $r=3\sin 2j$.
- 4. Вычислить площадь фигуры, ограниченной линией

$$\begin{cases} x = 5(t - \sin t) \\ y = 5(1 - \cos t) \end{cases}, \ 0 \le t \le p.$$

- 5. Вычислить длину дуги кривой $y = \arcsin e^{-x}$, $0 \le x \le 1$.
- 6. Вычислить длину дуги кривой $r=2e^{3/4j}$, $0 \pounds j \pounds p/3$.

7. Доказать, что
$$\frac{p}{4} \le \int_{p/4}^{p/2} \sqrt{1 + \cos^2} dx \le \frac{p\sqrt{6}}{8}$$
.

- 8. Найти объем тела вращения, если вокруг оси ОУ вращается фигура, ограниченная линиями $v = (x-1)^2$, v = 1.
- 9. Определить силу давления воды на вертикальную стенку, имеющую форму трапеции, нижнее основание которой a=10 м, верхнее b=6 м и высота h=5 м, если уровень погружения нижнего основания s=20 м.

1.
$$\int_{\sqrt{3}}^{\sqrt{2}} \frac{xdx}{\sqrt[3]{7-x^2}}$$
, $\int_{0}^{\infty} x^3 e^{-2x}$, $\int_{0}^{4} x^2 \sqrt{16-x^2} dx$, $\int_{0}^{1} \frac{xdx}{3+2\sqrt{x}}$.

- 2. Найти площадь фигуры между линией $y=xe^{-x^2/2}$ и ее асимптотой.
- 3. Вычислить площадь фигуры, ограниченной линией $r=a(1+\sin j)$.
- 4. Вычислить площадь фигуры, ограниченной линиями $\begin{cases} x = 3(t \sin t) \\ v = 3(1 \cos t) \end{cases}, y = 3$ (y^33) .
- 5. Вычислить длину дуги линии $y=0.5x^2$, отсеченной прямой y=2.
- 6. Вычислить длину дуги кривой, заданной уравнениями $\begin{cases} x = 5(t \sin t) \\ v = 5(1 \cos t) \end{cases}$
- 7. Оценить интеграл $\int_{0}^{1} \sqrt[3]{4-3x^{2}} dx$, не вычисляя его.
- 8. Вычислить объем тела вращения, образованного вращением фигуры, образованной кривыми $y=x^2$ и $y^2=x$ около оси ОХ.
- 9. Какую работу надо затратить, чтобы тело массой m поднять с поверхности земли на высоту h? Чему равна эта работа, если тело должно быть удалено в бесконечность?

$$1.\int_{0}^{1} x^{2} e^{x^{2}} dx, \int_{-2}^{1} \frac{dx}{(11+5x)^{2}}, \int_{0}^{1} \frac{\sqrt{x+1} dx}{x+5}, \int_{1}^{2} \frac{dx}{\sqrt{x^{2}-1}}.$$

- 2. Вычислить площадь фигуры, ограниченной линиями $y = x^2 2x$ и y = x.
- 3. Вычислить площадь фигуры, ограниченной линией в полярной систем координат $r=4+\cos 2\varphi$.
- 4. Вычислить площадь фигуры, ограниченной линиями $\begin{cases} x = \sqrt{2} \cos t \\ y = 2\sqrt{2} \sin t \end{cases}$

$$y = 2, (y \ge 2)$$
.

- 5. Вычислить длину дуги кривой $y^2 = 4/9(2-x)^3$, отсеченной прямой x = -1.
- 6. Вычислить длину дуги параметрической кривой $\begin{cases} x = 3(2\cos t \cos 2t) \\ y = 3(2\sin t \sin 2t) \end{cases}$

- 7. Оценить интеграл $\int_{0}^{1} \sqrt[3]{5-4x^2} dx$, не вычисляя его.
- 8. Вычислить объем тела вращения, образованного дугой кривой $x^3 = y$ при ее вращении вокруг оси ОY от x=y=0 до x=3.
- 9. Вычислить кинетическую энергию диска массы М и радиуса R, вращающегося с угловой скоростью ω около оси, проходящей через его центр, перпендикулярно к его плоскости.

$$1. \int_{0}^{p/2} \frac{\sin 2x}{1 + \cos^{2} x} dx, \int_{0}^{\infty} x^{2} e^{-x^{3}} dx, \int_{0}^{2} \frac{x^{2} dx}{1 + x^{3}}, \int_{0}^{1} \frac{x^{2} dx}{(x+1)(x^{2}+1)}.$$

- 2. Вычислить площадь фигуры, ограниченной линиями $y^2 = 4 + x$, x + 3y = 0. 3. Вычислить площадь фигуры, ограниченной линией $r = \cos 2j$.
- 4. Вычислить площадь фигуры, ограниченной линиями $\begin{cases} x = 8(t \sin t) \\ y = 8(1 \cos t) \end{cases}$

$$y = 12, (y \ge 12), (0 \le x \le 16p).$$

- 5. Вычислить длину дуги параболы $y=x^2/2-1$, отсеченной осью ОХ.
- 6. Вычислить длину дуги кривой $\begin{cases} x = 8(\cos t + t \sin t) \\ y = 8(\sin t t \cos t) \end{cases}, 0 \le t \le \frac{p}{4}.$
- 7. Оценить интеграл $\int_{p/4}^{p/2} \frac{\cos x}{x} dx$, не вычисляя его.
- 8. Найти объем тела, образующегося при вращении фигуры, ограниченной линиями около оси ОҮ: $y = \sqrt{x-1}$, y = 0, y = 1, x = 0.5.
- 9. Какую работу надо затратить, чтобы остановить железный шар радиуса R, вращающийся с угловой скоростью вокруг своего диаметра?

1.
$$\int_{0}^{1} xe^{2x^{2}} dx$$
, $\int_{0}^{p} x\cos\frac{x}{3} dx$, $\int_{0}^{\infty} \sqrt{x}e^{-x} dx$, $\int_{1}^{\sqrt{3}} \frac{dx}{(1+x^{2})^{3/2}}$.

- 2. Вычислить площади фигур, ограниченных графиком функций $y = (x-2)^3$, y = 4x - 8.
- 3. Вычислить площадь фигуры, ограниченной линиями $r = \sin j$, $r = 2\sin j$.
- 4. Вычислить площадь фигуры, ограниченной линиями $\begin{cases} x = 6\cos t \\ v = 2\sin t \end{cases}$

$$y = \sqrt{3} \quad (y \ge \sqrt{3}).$$

- 5. Найти длину дуги кривой $y = \ln(1 x^2)$ от точки $x = -\frac{1}{2}$ до $x = \frac{1}{2}$.
- 6. Вычислить длину дуги кривой $\begin{cases} x = 3(t \sin t) \\ y = 3(1 \cos t) \end{cases}$, $p \le t \le 2p$.
- 7. Оценить интеграл $\int_{2}^{5} \frac{dx}{\sqrt{1 + x^{3}}}$, не вычисляя его.
- 8. Вычислить объем тела вращения, образованного вращением фигуры, ограниченной линями $y=2x-x^2$, y=2-x, x=0 вокруг оси ОХ.
- 9. Пружина имеет длину 20 см. Сила в 10 кГ растягивает ее на 2 см. Определить работу, затраченную на растяжение пружины от 25 до 35 см.

1.
$$\int_{-1}^{-6} \sqrt{3 - x} dx$$
, $\int_{1}^{\infty} \frac{dx}{x^2 (x + 1)}$, $\int_{0}^{p/4} \frac{x \sin x}{\cos^3 x} dx$, $\int_{0}^{1} \frac{\sqrt{e^x} dx}{\sqrt{e^x + e^{-x}}}$

- 2. Вычислить площадь фигуры, ограниченной графиками функций $y = \arccos x$, x = 0, y = 0.
- 3. Вычислить площадь фигуры, ограниченной кривой $r = \cos j + \sin j$.
- 4. Определить площадь фигуры, ограниченной линиями $\begin{cases} x = 6(t \sin t) \\ v = 6(1 \cos t) \end{cases}$ $y = 9, (y \ge 9), 0 \le x \le 12.$
- 5. Найти длину дуги кривой $y = -\ln \cos x$, $0 \le x \le \frac{p}{4}$.
- 6. Определить длину дуги кривой $\begin{cases} x = 4(t \sin t) \\ y = 4(1 \cos t) \end{cases}$, $\frac{p}{2} \le t \le \frac{2p}{3}$.
- 7. Оценить интеграл $\int_{0}^{1.5} \frac{dx}{\sqrt[3]{27 + x^3}}$, не вычисляя его.
- 8. Определить объем тела вращения фигуры, ограниченной линиями $x^2 + y^2 = 4$ $y = \pm 2$ около оси ОҮ.
- 9. Аквариум имеет форму прямоугольного параллелепипеда. Найти силу давления воды (плотность воды 1000 Kr/m^3), наполняющей аквариум, на одну из 4 - xего вертикальных стенок, размеры которой 0,4 х 0,7 м.

$$1.\int_{0}^{1} \frac{xdx}{1+x^{4}}, \int_{2}^{8} \frac{dx}{\sqrt{x}}, \int_{1}^{2} \frac{\sqrt{x^{2}-1}}{x^{4}} dx, \int_{0}^{\infty} x^{2} e^{-x/2} dx.$$

2. Вычислить площадь фигуры, ограниченной линиями $y = \sin x$, $y = \cos x$, x = 0.

- 3. Вычислить площадь фигуры, ограниченной линией $r=5(1-\sin j)$.
- 4. Вычислить площадь фигуры, ограниченной линией $\begin{cases} x = a \cos^3 t \\ v = a \sin^3 t \end{cases}$
- 5. Вычислить длину дуги кривой $y = \ln \sin x$ от $x = \pi/3$ до $x = \pi/2$.
- 6. Вычислить длину одной арки циклоиды $\begin{cases} x = 9(t \sin t) \\ y = 9(1 \cos t) \end{cases}$
- 7. Доказать, что $9 \le \int_{0}^{18} \frac{x+1}{x+2} dx \le 9,5$, не вычисляя интеграла.
- 8. Найдите объем тела, образованного вращением параболы $y^2 = 4ax$ вокруг оси OX от ее вершины до точки x=3a.
- 9. Материальная точка движется со скоростью $u(t) = \operatorname{arctg} t$ м/с. Вычислить путь, пройденный за 20 секунд с момента начала движения.

$$1. \int_{1}^{3} x^{2} \sqrt{x^{2} - 1} dx, \int_{4}^{9} \frac{\sqrt{x}}{\sqrt{x} - 1} dx, \int_{0}^{p/6} \frac{\sin^{2} x}{\cos x} dx, \int_{-\infty}^{+\infty} xe^{-x^{2}} dx.$$

- 2. Вычислить площадь фигуры, ограниченной линиями $y=(1/4)x^2$, $y=3x-x^2/2$.
- 3. Вычислить площадь фигуры, ограниченной линией $r = \cos j \sin j$.
- 4. Вычислить площадь фигуры, ограниченной линиями $\begin{cases} x = 8(t \sin t) \\ y = 8(1 \cos t) \end{cases}$

$$y=12$$
, (y^312) , $0 < x < 16p$.

- 5. Вычислить длину дуги кривой $y = \ln 7 \ln x$, $\sqrt{3} \le x \le \sqrt{8}$.
- 6. Вычислить длину дуги кривой $\begin{cases} x = 3\cos^3 t \\ y = 3\sin^3 t \end{cases}, \ p/6 \pounds t \pounds p/4.$
- 7. Оценить интеграл $\int_{0}^{1} \sqrt{1+2x^{3}} dx$, не вычисляя его
- 8. Найти объем тела вращения, если вокруг оси ОУ вращается фигура, ограниченная линиями $y=(x-1)^2$, y=1.
- 9. Какую работу затрачивает подъемный кран при извлечении железобетонной надолбы со дна реки глубиной в 5 м, если надолба имеет форму правильного тетраэдра с ребром в 1 м, а удельный вес железобетона 2500 кг/м³.

$$1.\int_{1}^{2} \frac{1}{x^{2}} e^{1/x} dx, \int_{2}^{4} x^{2} \sqrt[3]{x^{3} - 8} dx, \int_{1}^{2} x \ln(x+1) dx, \int_{1}^{\infty} \frac{dx}{x^{2} + 2x + 2}.$$

- 2. Вычислить площадь фигуры, ограниченной линиями $y=16/x^2$, $y=17-x^2$, $(x\ge 0, y\ge 0).$
- 3. Вычислить площадь фигуры, ограниченной кривой $r=1/2+\sin j$
- 4. Вычислить площадь фигуры, ограниченной линиями $\begin{cases} x = 10(t \sin t) \\ y = 10(1 \cos t) \end{cases}$

$$y=15$$
, (y^315) , $0 £x £20 p$.

- 5. Вычислить длину дуги кривой $y=\ln(x^2-1)$, $2\pounds x \pounds 3$.
- 5. Вычислить длину дуги кривой $\begin{cases} x = 3(t \sin t) \\ y = 3(1 \cos t) \end{cases}$, $p \le t \le 2p$.
- 7. Доказать, что $\frac{2}{5} \le \int_{1}^{2} \frac{x dx}{x^2 + 1} \le \frac{1}{2}$.
- 8. Вычислить объем тела вращения, образованного вращением фигуры, ограниченной линиями $y=-x^2+5x-6$, y=0 вокруг оси ОХ.
- 9. Водопроводная труба имеет диаметр 6 см., один конец ее соединен с баком, в котором уровень воды на 100 см выше верхнего края трубы, а другой закрыт заслонкой. Найти полное давление на заслонку.

1.
$$\int_{4}^{13} \frac{dx}{\sqrt[4]{x-3}}, \int_{0}^{4} \frac{\sqrt{x}}{1+x} dx, \int_{0}^{2} \frac{dx}{(x-1)^{2}}, \int_{0}^{\frac{\sqrt{2}}{2}} \frac{xdx}{\sqrt{(1-x^{2})^{3}}}.$$

- 2. Вычислить площадь фигуры, ограниченной линиями $x=y^2+2y$, $x=(y+2)^2$, x=-y, $(-1 \le x \le 1)$.
- 3. Вычислить общую часть фигуры, образованную линиями $r^2 = 4\cos 2j$, $r=\sqrt{2}$.
- 4. Вычислить площадь фигуры, ограниченной линиями $\begin{cases} x = 9\cos t \\ y = 4\sin t \end{cases}, y = 2,$ $(v^{3}2).$
- 5. Вычислить длину дуги кривой $y=5+\arcsin x \sqrt{1-x^2}$, $0 \pounds x \pounds 1$.
 6. Вычислить длину дуги кривой $\begin{cases} x=3,5(2\cos t-\cos 2t) \\ y=3,5(2\sin t-\sin 2t) \end{cases}$, $0 \le t \le p/2$.
- 7. Оценить интеграл, не вычисляя его $\int_{-\infty}^{p} \frac{\sqrt{x} dx}{x+2}$.

- 8. Вычислить объем тела вращения, образованного вращением фигуры, ограниченной линиями $y=x^2+1$, y=x, x=0, x=1 вокруг оси ОҮ.
- 9. Цилиндр диаметром 20 см. длиной 80 см. заполнен паром под давлением 10 кг/см². Какую работу надо затратить, чтобы уменьшить объем пара в два раза, считая, что температура пара остается постоянной?