Примеры теоретических вопросов к экзамену

Каждый экзаменационный билет, помимо задач, содержит два теоретических вопроса наподобие приведённых ниже. При подготовке к экзамену постарайтесь ответить на вопросы из этого списка: это позволяет разобраться в происходящем на более глубоком уровне, чем просто решение типовых задач.

- 1. Опишите все матрицы A размера 2×2 , для которых выполняется равенство: **a)** $A^T = A$; **6)** $A^T = 3A$.
- $2. \ a)$ Пользуясь свойствами определителя, докажите, что если для матрицы A существует обратная матрица A^{-1} , то $\det A \neq 0$.
 - **б**) Верно ли, что если A и B квадратные матрицы одного размера и $\det A = 0$, то матричное уравнение AX = B не имеет решений?
- **3**. Приведите пример матриц A и B, для которых:
 - а) определена матрица AB, но не определена матрица BA;
 - $\mathbf{6}$) определена матрица BA, но не определена матрица AB;
 - в) матрицы AB и BA определены, но $AB \neq BA$;
 - Γ) матрицы AB и BA определены, причём AB = BA.
- 4. Определите вид четырёхугольника АВСО на плоскости (параллелограмм, трапеция, ромб, прямоугольник и т.д.), если:
 - a) $\overrightarrow{AB} = \overrightarrow{DC} \text{ if } |\overrightarrow{AB}| = |\overrightarrow{BC}|;$
 - б) $\overrightarrow{AB} \uparrow \uparrow \overrightarrow{DC}$, а векторы \overrightarrow{AD} и \overrightarrow{BC} не коллинеарны;
 - B) $\overrightarrow{AB} || \overrightarrow{DC} \mathbf{u} || \overrightarrow{AC} | = |\overrightarrow{BD}|$
- 5. Обычно прямую в пространстве задают системой из двух линейных уравнений. А можно ли произвольную прямую в пространстве задать одним уравнением (не обязательно линейным)?
- **6**. Приведите примеры таких функций f и g, что:
 - а) существует предел $\lim_{x\to\infty} \big(f(x)+g(x)\big)$, но не существует пределов $\lim_{x\to\infty} f(x)$ и $\lim_{x\to\infty} g(x)$; 6) существует предел $\lim_{x\to\infty} \big(f(x)\cdot g(x)\big)$, но не существует пределов $\lim_{x\to\infty} f(x)$ и $\lim_{x\to\infty} g(x)$;

 - в) существует конечный предел $\lim_{x \to \infty} \left(\frac{f(x)}{g(x)} \right)$, но $\lim_{x \to \infty} g(x) = 0$.
- 7. Приведите примеры таких функций f и g и точки x_0 , что $\lim_{x \to x_0} f(x) = +\infty$, $\lim_{x \to x_0} g(x) = -\infty$ и при этом $\lim_{x \to x_0} (f(x) + g(x)) = a$, где: **a)** a = 0; **б)** a = 2; **в)** $a = +\infty$; **г)** $a = -\infty$.
- **8.** а) Докажите, что $\lim_{x\to 0} \frac{\sin x}{x} = 1$.
 - б) Пользуясь первым замечательным пределом, докажите, что $(\sin x)' = \cos x$ и $(\cos x)' = -\sin x$.
- 9. Зная, что $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$, докажите, что: **a**) $\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$; **б**) $\lim_{x \to 0} \frac{e^x 1}{x} = 1$; **в**) $\lim_{x \to 0} \frac{\ln(x + 1)}{x} = 1$.
- 10. Выведите по определению правила дифференцирования основных элементарных функций: степенной (с произвольным показателем), показательной, логарифмической, тригонометрических.
- **11**. а) Сформулируйте правило дифференцирования сложной функции. **6**) Зная, что $(e^x)' = e^x$ и $(\ln x)' = \frac{1}{x}$, вычислите производные $(a^x)'$ и $(\log_a x)'$, используя правило дифференцирования сложной функции.
- 12. Сформулируйте правило дифференцирования обратной функции. Докажите с его помощью, что: а) $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$; б) $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$; в) $(\arctan x)' = \frac{1}{1+x^2}$; г) $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$.
- **13**. Приведите пример такой функции f и точки x_0 , что $f'(x_0) = f''(x_0) = 0$ и при этом:
 - а) точка x_0 является точкой локального минимума функции f;
 - **б)** точка x_0 является точкой локального максимума функции f;
 - в) точка x_0 не является точкой локального экстремума функции f.