

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА (НИУ) имени И.М. ГУБКИНА

КАЛЕНДАРНЫЙ ПЛАН

Дисциплина "Методы математической физики"

УЧЕБНЫЙ ПЛАН

Факультет

АиВТ

осенний семестр 2018/2019 учебного года

Всего часов Лекции 54 18

Курс 3

Лектор доц. Скориков А.В.

Практич. занятия

36

Номер	Лекции	Кол-	Практические занятия	Кол-	Форма контроля
неде- ли		во часов		во часов	
1	1. Задача Штурма-Лиувилля. Свойства собственных значений и собственных функций.	2	Задача Штурма-Лиувилля	2	
2	Уравнение колебаний струны. Решение уравнения свободных колебаний при условии жёсткого закрепления концов. Стоячие волны	2			
3	Решение неоднородных уравнений с однородными граничными условиями. Алгоритм решения задач с неоднородными граничными условиями.	2	Решение уравнений свободных колебаний.	2	
4	Уравнение теплопроводностиВиды граничных условий для уравнения теплопроводности стержня. Алгоритм решения уравнения теплопроводности стержня с однородными граничными условиями	2	Решения уравнения теплопроводности стержня		
5	Стационарное распределение тепла. Решение уравнения Лапласа в круге. Классификация граничных условий для уравнений Лапласа и Пуассона.	2	Решение уравнения Лапласа в круге.	1	
6	Уравнения второго порядка в частных производни Характеристики. Теорема о характеристиках				

7	Решение волнового уравнения на всей оси. Формула Даламбера. Характер распространения волны	2	Классификация уравнений второго порядка. Решение волнового уравнения на всей оси	2	
8-9	Понятие функционала. Экстремум функционала. Связь между слабым и сильным экстремумом Задача вариационного исчисления с неподвижных границами. Теорема о необходимом условии экстремума	2			
10	Задача о брахистохроне и её решение Собственное и центральное поля. Достаточное условие Якоби (без доказательства). Достаточные условия Вейерштрасса.	2	Экстремум функционала. Нахождение экстремалей	3	Приём задания .№1 — 1 час, 15 баллов Д.З.№1 -10 баллов
11	Достаточные условия Лежандра Условный экстремум. Необходимые условия условного экстремума (без доказательства).	2	Собственное и центральное поля. Достаточ условие Якоби (без доказательства). Достаточные условия Вейерштрасса.		
13	. Изопериметрическая задача. Необходимое условие экстремума.	2		2	
12-13	Определение случайного процесса. Сечение и траектория случайного процесса. Числовые характеристики случайного процесса. Стационарные и стационарные в широком смысле процессы. Эргодический случайный процесс	4	Числовые характеристики случайного процесса	2	Приём задания № 2 . 1 час, 10 баллов Д.З.№2 -5 баллов
14	Телеграфный сигнал. Вычисление его ковариационной функции Непрерывность случайн процесса. Производная случайного процесса. Вычисление ковариационной функции производн стационарного случайного процесса.	2			
15	Теорема Хинчина. Спектральная плотность и её свойства. Достаточное условияе существования спектральной плотности. Спектральная плотность процесса типа телеграфного сигнала	4	Спектральная плотность, её свойства, вычисление.	2	

16	. Теорема о спектральном представлении. Спектральная плотность производной случайного процесса и дифференциального выражения (вывод формулы).	2		2	
17-18	Спектральная плотность выходного сигнала со стационарным входным сигналом линейной динамической системы n-го порядка.	4	Спектральная плотность выходного сигнала со стационарным входным сигналом линейной динамической системы 1-го и 2-го порядков.		Приём задания № 3 . 1 час, 15баллов Д.3№35 баллов
Рекомендуемая литература.		Дополнительная литература			
1. Э	1. Эльсгольц Л.Э. Вариационное исчисление. М.: изд-во ЛКИ, 2008. – 208		1. Треногин В.А., Писаревский Б.М., Соболева Т.С. Функциональный анализ в 2 т.		
c.	c.		Т.1 – М.: Издательский центр «Академия», 2012. – 240 с.2. Гмурман В.Е.		
2. N	2. Миллер Б.М., .Панков А.Р Теория случайных процессовМ.		2.Треногин В.А., Писаревский Б.М., Соболева Т.С. Функциональный анализ в 2 т.		
	Физматлит,2002		Т.2 – М.: Издательский центр «Академия», 2012. – 240 с		
	• Краснов М.Л. Макаренко Г.И. Киселёв А.И. Вариационное исчисление.		3. Теория случайных процессов . Учеб. Для вузов./ В.А. Печинкин и др. – М.: Изд-		
	МУРСС, 2002.		во МГТУ им. Н.Э. Баумана. 1998.		
4. T	4. Тихонов А.Н. Самарский А.А. Уравнения мат. Физики М. Наука				
	r TTr				
y	уравнений. Учебное пособие. – М.: РГУ нефти и газа имени				
И	I.M.Губкина. 2007.				